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L INTRODUCTION

The object of this program has been to develop the Czochralski growth
technique to yield large ruby crystals with optical quality suitable for use as solid

state lasers.

The effort during this past period has been divided into two parts. The
first part has been devoted towards a study of the material preperties of the ruby
with special reference to its behavior during active lasing. This aspect of the
work is important as it gives a clearer understanding of the problems involved
and allows a more definite effort to be made towards their solution through effective

changes in the grow‘a conditions,

The second part describes our efforts in scaling up the present growth

process to produce large ruby crystals.




II. RESULTS

A. Material Properties of Ruby Laser Crystals

As part of a continuing program to improve the quality and performance of
our ruby laser crystals, two main problems are currently receiving attention. These
are: (1) chromium distribution in the crystalline alumina lattice and the inhomogeneities
in optical quality associated with localized changes in composition, and (2) the identifica-
tion and removal of particulate inclusions which are a limiting factor in the power obtainable
from a Q-switched laser system. Current research effort in both these areas is described

below.

(1) Chromium Distribution

(&) ___Average Compositional Variations

In this area we have confined our attertion to variations in the
chrome coritent along the length of the crystal as well as across the radius. Both of
these factors depend on keeping the eficctive distribution coefficient as close to unity
as possible throughout the complete growth cycle; this in turn is a function of interface

shape and growth conditions,

In the past we have had considerable success in maintaining a
coefficient close to unity; however, further experimentation has shown the sampling
procedure used to be somewhat misleading and a systematic vaviation dues occur in
the larger diameter ruby boules. Figure 1 shows the percentage variation in chromium
content as a function of crystal length for a number of ruby samples. This variation
had gone undetected due to the practice of sampling as-grown crystals at the top and
bottom only; as indicated in the previous report, these two values were identical and
thus it had been assumed that no longitudinal variation existed. This variation must
be due to changes in the thermal conditivns during crystal growth as it is directly

related to the power input from the RF generator.

To maintain the crystal diameter, a balance is required between

the hea’ flow to the growth interface plus the latent heat of solidification, and the heat
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removed by radiation through the solid. At the early stages of growth when the top
of the crystal emerges from the furnace insulation, a continuous increase in power
to the melt is required. At a critical length, which is a function of crucible and
insulation g ometry and crystal diameter, the power requirements level off and are
subsequently reduced; this point cccurs when a substantial amount of the melt has
been used up and the rate of heat removal through the crystzl is influenced by the

absorption of radiant energy from the hot crucible wails.

An explanation for the observed relationship between the heat
flow variations and chromium content in the solid has nout been established. However,
it is known that the effective distribution coefficient can be changed thrcugh variations
in both the growth rate and thickness of the diffusion layer along the interface; both of

these parameters are influenced by thermal conditions during growth.

Radial chromium variations exist to varying degrees depending
on where along the length of the crystal the measurement is made. At the top and
bottom where thc effective distribntion coefficient is significantiy greater than one
the center portion of the crystal has a lower chromium content than the edge. In
the middle of the crystal where the effective distribution coefficient is very clo e to

one, the radial chromium gradient is extremely low.

The ahove observations stress most clearly the ueed for an
effective distribution coefficient of unity throughout the entire growth cycle to eliminate
both longitudinal and radial ch:ome variations. This could best be achieved through
manipulation of the appropriate growth parameters, and future experimental work

will be carried out along these lines.

(by Localized Compositional Variations

The core represents an inhomogeneous structure extending
throughout the length of the crystal which is associated with the formation of a facet

on the interface. () This effect is not unique to ruby and is encountered in a'most

(1) F.R. Charvat, J.C. Smith, and O, H. Nestor, Characteristics of Large Ruby
Crystals, Proceedings of an International Conference on Crystal Growth,
Boston, U.S. A., ed. H. S. Peiser, 45-50, June 1966.
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all melt-grown crysials, notable examples being doped Ge and Si(2)(,3)and Nd®
doped YAG.

There is no clearly defined reason for this phenomenon, but
generally it cap be said that « stable nucleus forms at the interface with an effective
distribution coefficient which differs from the average value across the remainder
of the interface. The orientation of this stable nucleus is normally a low angle

crystallographic plane which in the case of ruby is hohs or {00013 .

There is a very definite relationship between both the size and
distribution of the core and the growth orientation of the crystal. A series of experi-
ments have been carried out with crystals containing a nominal 0. 05 wt % Cr,04
grown under identical conditions and using different seed orientation. The facets
on the interface were examined closely and their size and shape related to schlieren
photographs taken of polished windows cut from the top and bottom of the boule. The
boules themselves were also examined and will subsequently be fabricated into laser

rods to examine the effect of the core on active lasing.

Examination of crystals grown using seeds of 60° orientation
showed that the facets on the interface were positioned corresponding to tne 'r"
planes closest to the growih direction, One 'r'' plane normal approximately 27° away
from the boule axis gave a facet at the tip, whereas as the other normal at approximately
67° to the growth interface produced two relatively large facets; one of these was
close to the tip with the other midway along the interface. A schlieren photograph
of a polished section of the boule adjacent to the interface showed three distinct
cores corresponding to the facets, The core for the facet with normal closest to
the growth direction was the most distinct; this core could be secen running through

the length of the houle section after flats had been polished on its side. Both the

(2) ¢.A.M. Dikhoff, Cross-sectional Resistivity Variations in Germanium Single
Crystals, Solid State Electronics 1, 202-219 {1960).

(3) J.A.M. Dikhoff, Inhomogeneities in Doped Germanium and Silicon Crystals,
Philips Technical Review, 25, No. 8, 195-206, 1963/64.
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facets on the interface and corresponding schlieren photographs of the adjacent
boule sample are shown in Figure 2. Cores corresponding tn the facets lying
almost tangential to growti interface were not so clearly defined and were unable

to be detected from a schlieren taken along the boule length,

A white sapphire boule was grown with the same orientation,
and identicnl facets were observed on the inicrface. A schlieren photograph of the
adjacent boule section showed only a faint core corresponding to the low angle facet

at the tip.

The schlieren technique allows a measure to be made of any
change in refractive index across a localized region in the crystal. The index
variations can arise from a rumber of different sources, the most important being
solute eoncentration, misorientations, residual str: s, and temperature changcs(4).
The core in ruby is more pronocunced than in white sapphire for crystals grown with
identical seed orientation; this indicates clearly the importance of changes in
chromium concentration. With white sapphire it is possinle that the refractive
index changes are caused by residual impurities having a different effective distribu-
tion coefficient across the facet. This is consistent with work carried out on undoped

InSb(s) where a core was visible with an impurity concentration of approximately

1014 atoms/cma.

To investigate further the core structure, four ruby boules
were grown and are shown in Figure 3. The shape control was good with the average
diameter constant down the le.igth of the boule; slight rippling cid occur wnich was
attributable to incorrect controller settings. Inspection ends with a six micron
diamond finish were fabricated on to the boules and schlieren photographa taken to

reveal the shape and size of the core.

(4) O.H. Nestor, Refractive Index Variations of Ruby; Beam Divergence and
Interferometry, Speedway Research Laboratory Miscellanecus Note No. 37, June 1964,

(5) J.B. Mullin and K. F. Hulme, Orientation-Dependent Distribution Coefficients in
Melt Grown InSb Crystals, J. Phys. Chem, Solids, 17, Nos. 1/2, 1-6 (1960).

-6~




1

Ay
]

4

g

[

e

.

Figure 2,

Showing correlation between the facet on the growth interface
and the corresponding schlieren photograph.
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Figure 3.

""As grown'' ruby boules with inspection ends.




— o = e s i

A set of photographs were taken with the normal orientation
technique of lining up the light beam normal to the polished end. These are shown in
Figure 4, 6 and 8 for B parallel and normal to the plane containing the C axis (in all
photographs this plane is vertical). (Results are given for three boules only as the
fourth gave no additional information. )

The same rods were then rotated about both the horizontal and
vertical position in order to minimize the area of the core; the corresponding schlieren
photographs are reproduced in Figures 5, 7, and 9 withE parallel to the plane containing
the C axis in all cases. Figﬁre 10 indicates the variation in core size and shape which
canr be obtained with small deliberate changes in the orientation along the horizontal and
vertical direction away from that shown in Figure 9. The identification number and
orientation of the boules are given in Table L

TABLE I
Crystal No. Seed No. ry ry r; ¢ a
2500-12-6 103 7 57 46
2500-37-18 152 37-1/2 64 64 60-1/2 32-1/2
2500-10-5 102 27 65-1/2 75 61-1/2 27-1/2
2500-33-16 102 27 65-1/2 75 61-1/2 27-1/2

The above findings point to some important conclusions concerning
the cor= in ruby. With the same seed and under identical growth conditions, it is
possible to change the apparent shape and size of the core through slight misorientations
in the polished boule face relative to the original growth direction, Consideration of a
boule grown from a seed of sixty degree orientatio shows the central core to he about
0.3 mm diameter after corrected alignment; this core corresponds to faceting on the

"r" plane with normal 27° to the growth direction.

Previous schlieren photographs taken of a sample with fiats
polished on the side indicate thatthis core remains straight an” of constant diameter

down the length of the boule. The result is to be expected because of the low angle




—
E parallel to C.

—
E perpendicular 10 C.

Figure 4. Boule No. 2500-12-6 - schlieren taken with light beam normal
to inspection face.
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Figure 5. Boule No. 2500-12-6 - orientation chosen to eliminate core area,
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Figure 6.

Boule No. 2500-33-16 - schlieren taken with light beam normal
to inspection face.
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Figure 7.

Boule No. 2500-33-16 - orientation chosen to minimize core area.
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E parallel to C.

—
E perpendicular to C.

Figure 8. Boule No. 2500-10-5 - schlieren taken with light beam normal
to inspection face,
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Figure 9.

Boule No, 2500-10-5 - orientation chosen to minimize core area.
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Figure 10.

No. 2500-10-5 - Schlieren photograph skowing the effect of
horizontal and vertical movement of the boule on core shape
and size.
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conical interface found in ruby crystal, where all "r'' plane facet. with normals tc the

growth direction between approximately sixty degrees and zero are confined *o the tip.

To separate ihe central cores on a schlieren photograph would
require a relative movement between the top and bottom of the rod of about 0.5 mm,;
with a six-inch long rod, this represents an angle of approximately 10 rinutes. Itis
suggr:sted then that more consiste::cy can be achieved over both the size and shape of
the core if the laser rods are fabricated with faces normal to the growth direction to

within an accuracy 10 minutes.

With our "sixty degree'" orientation seed crystal, a second "r"
plane occurs with a normal at 67° from the growth axis. Under present growth
conditions, this plane is almost tangential to the growth interface and two facets
are formed, one coming away from the tip and the other half way up the interface.
The large angle cores are not so distinct as those confined to the center; however,
because of their much larger relative size slight misorientations relative to the

growth axis have a much more pronounced effect on the apparent core size and shape.

It has been shown that changes in the melt temperature can
effectively change the conical angle of the growth interface, Because of the steep
angle encountered with ruby and sapphire crystals, a relatively small change in
temperature is sufficient to move the facet from the side to the tip of the interface
when the angle between the ''r" plane normal and the growth direction is around 65°,
The temperature fluctuation is not enough to affect the quality of the boule but would

most likely be reflected as a small change in the '"as grown'" diameter,

It can be shown that a change in seed orientation such as to move
the angle between the "r," norinal and the growth direction to a value greater than 70°
will effectively remove the facet (and corresponding core) tangential to the growth
interface. Using a seed of orientation such that growth direction is along the "'r"
p!ane normal would do this most effectively. A complication arises, however, due
toc the fact that there is a tendency for a crystal growth with this orientation to become

elliptica! and produce an elliptical shaped core; this can clearly be seen in Figure 3.

-17-
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In addition to retaining a concantric boule throughout the
growth cycle, it is also important that the crystal grows straight. The effect of
not keeping the boule straight can be seen by examination of Figures 7 and 9.
Boule No. 2500-33-16 was not perfectly straight and it was impossible to manipulate
the orientation to prouuce one well defined core; this should be compared with
Boule No, 2500-10-5 which has been grown fro- - the same seed but was much

straighter down its length.

This rreliminary study has shown that the size and shape of

the core in a fabricated laser rod is dependent on three factors:

(i) The growth orientation
(ii) The straightness and concentricity during growth
(iii) Misorientations during fabrication

The effect of g..owth orientations is becoming clear and work
will proceed in order to reduce the core size. The use and better understanding of
the shape monitoring device has in recent months improved both the straightness and
concentricity of the as-grown boules. The improvement is such that contributions
to the apparent core size and shape during the actual growth are relatively small
compared to that introduced by small misorientations during fabrication, The
effect of these misorientations could be minimized by lining up the rods, using the
schlieren technique, to give minimum core size and fabricating the ends normal to

the laser light beam,

In an attempt to determine the variation .n chromium content
across the core measurements have been made on polished windows using both { »

electron probe and spectrographic absorption techniques,

The electron probe work has not yet been completed and will
be reported at a later date., Preliminary work using an cptical absorption technique
has indicated an increase in chromium content in the vicinity of the core., Figure 11

__'
shows the resuli of scanning across the window using light polarized with E normal

-18-
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to the C axis., The scan was made along the direction shown on a schlieren
photograph of the window in Figure 12, The base line for each scan shown in
Figure 11 was taken as 0. 0440 wt % Cr,0,, and the shape of the core siiown on
the diagram was copied directly from the schlieren photograph; the larger pecaks

are due to vefe.ence scratches on the surface.

It is possible to see a correlation between the core ana
a corresponding localized rise in chromium concentration, The inc.ease is
only about 2% and care has to be taken in proper alignment of the instrument as

well as obtaining the optimum window thickness ard surface finish. It is hoped

“"that further refinement of the technique will lead to more conclusive results from

future work.

In addition to finding out information conceruing the origin
and physical characteristics of the core, itis also important to know what is its
influence on the active lnsing properties of the ruby rod. Preliminary examination
of the problem has shown that a possible association can exizt between the core
and an uneven energy distribution in the near field lasing pattern; it is also possible

to correlate the schlieren patterns obtained under both active and passive testing.

To further this effort, a series of laser rods are presently
being fabricated for testing in the laboratory's recently acquired Korad K2 Laser
Head. These contain a number of different core structures obtained by changing
the seed orientation and the corresponding facet formation at the inter_ace; a
comparison will be made between these rods and two others which have been

selectively cut from a larger diameter ruby to be core free.

-20~-
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Figure 12.

Schlieren of window used in optical absorption work; scan was
made horizontally along the lines shown.
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(2) Internal Laser Damage

The peak power obtainable from Q-switched laser systems is limited
at this time chiefly by damage attributable to particulate inclusions. In the case of
glass, it has been recognized for some time that platinum inclusions introduced during
the melting process are at fault. It has been demonstrated that crucible material
(iridium) inclusions led to damage in Czochralski rubies grown in the present program. ©)
We have examined some of the Verneuil rubies damaged in laser studies by Avizonis

()

and Farrington' ° and there too found evidence presented below that damage was related

to inclusicnas.

The problem with p.~tinum in glass and iridium in ruby is assumed
to be that these inclusions absorb pump and laser radiation and thereby cause damage
to the matrix by several possible routes ranging from expansion to fusion and perhaps
vaporization of the inclusion, or perhaps by thermal stressing of the matrix. We have
made calculations on various aspects of the heating of inclusions - specifically iridium -
in an effort to clarify the damage mechanism, to point up more precisely the type of
control against inclusions needed in the growth process and to indicate what experimental
observations in damage testing may be fruitful. These calculations are summarized
in Section (b) beiow, foliowing a presentation of damage threshold data, including
Czochralski ruby results, in Section (a}.

(a) Damage Threshold Data

The damage threshold data of Avizonis and Farringtonm are

represented in Figure 13 by the circled points showing experimental scatter. The

(6) '"Czochralski Ruby'', Report No. SRCR-66-2 by F. R. Charvat, O. H. Nestor,
and J. C. Smith, Union Carbide Corporation, Linde Division, Speedway Laboratories,
January 26, 1966. (Semi-annual Technical Summary Report, Contract NONr-4132(00).

() P. V. Avizonis and T, Farrington, Internal Self-Damage of Ruby and Nd-Glass
Lasers, Appl. Phys. Letters 7 (8), 205 (15 October 1965).

-29-
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curves drawn through these points are not those of Avizonis and Farrington. Rather,

the eurves drawn hcre - particularly that for ruby - point up a new summary of the

results, viz, that the damage threshold is energy-limited at the shor est puise lengths,

but power-limited at longer (> 50 nanosecnr.ds). How far the power liinit may extend
is clearly not defined. It presumably does not extend into the millisecond pulse
length regime with the same power limits indicated in Figure 13 (300 megawatts/cm?
for ruby and 120 megawatts/cm? for glass) for then the damage thresholds at 1 milli-
seconds would be 300 Kilojoules/ci1a? and 122 Kilojoules/cm?, respectively, for ruby
and glass. The latter is ca. 600x greater than the value reported by Avizonis and

Farvrington.

Figure 13 shows two other points - one for a Czochralski
ruby designated by an open square and the other for a Verneuil ruby denoted by a
full square - representing the results of other, more recent tests at Kirtland AFB(S)
conductrd to update the Czochralski-Verneuil comparison. Like the other points,
these represent the onset of damage at the output end of amplifier rods. The pulse
length assignment is nominal, The discrepancy between the new Verneuil rod and
the others defining the full curve ‘s not res. ‘vable except in speculation. The liew
Verneuil rod and the Czochralski rod were remarkably similar in damage behavior.
Each was damaged also at its input end in a manner similar to that shown in
Figure 1 of Reference (6). That type of damage has been assumed to be a focusing -

rather than an inclusion - induced effect, because the damage location is highly

reproducible and the form of damage rather unique.

(8) We gratefully acknowledge the cooperation of the Effects Branch of the AF
Weapons Laboratory, Kirtland AFB, New Mexico, in testing rods for damage
and in particular the helpful efforts of Dr, P.V. Avizonis, Capt. K. C. Jungling,
and Sgt. W. Willoughby.

-23-
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Figure 13. Energy Threshold for Laser Internal Damzage vs Pulse Length
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Avizonis and Farrington have noted that there was no damage
observable due to pump light (u-v filtered out) even with pump energies higher than

normally used. ™

We have exomined some of the Verneuil rubies damaged
in their work. We succeeded in splitting open one of the rubies at and along a
damage center 'plane'. X-ray studies identified this as an r-plane (10- 1) and an
electron microprobe survey of the damage zone disclosed a multiplicity of particles,
each containing nickel, iron and chromium and ranging in size up to about 40 microns. ®)
These were comparable in size to opaque inclusions spotted in other damage zones in the
same rrystal. The stainless steel '"debris" indicated by the electron probe studies is
assumed to have been in metallic form inasmuch as it appeared to be related to

inclusions that are opaque and since it was entrappec during growth under reducing

conditions.

(b) Heating of Inclusions

The data of Figure 13 invite interpretation as follows:

1. The energy threshold limit as pulse length approaches zero
reflects what is needed to produce damage when inclusions do not lose thermal energy
to their environment. The energy threshold for Czochralski ruby is shown b_iow to be
sufficient to bring iridium inclusions, as identified thus far, to melting, if re-
radiation from the inclusion and conduction cooling are neglected. Re-radiation
is in fact entirely negligible. It is assumed that conduction cooling is negligible in the
short times involved.

2. The energy threshold increases with pulse length as a

result of energy exchange from inclusion to the matrix. The exchange mechanism,

(9) We are indebted to Mr. A. M. Hawley of our Laboratories for the X-ray work
and to Dr. W. D. Forgeng and his staff members. Mrs. Gloria M. Faulring,
and Mr. E, S. Malizie, of the Union Carbide Mining and Metals Division,
Technology Department, Niagara Falls, New York, for the electron probe work.

-25-
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if thermal, must be conduction. On this a:-sumption, it is shown that temperatures
of ca. 6000°K may be generated at the inciuvsion site during a laser pulse. Butit
also follows that the thermal gradients calculated are so excessive as to make the

classical freatment of conduction suspect,

The purpose of this section is to describe the calculations
supporting the above comments. The calculations are made with specific reference
to iridium inclusions, since something of their size, shape and orieatation is known.
Ir. lium inclusions are taken to be platelets, as reported in Reference (6). Only
laser radiation is included as a heat source, in light of the Avizonis and Farrington

finding that the pump source produces no damage.
Symbols to be used are defined as follows:

= platelet thickness, cm
= platelet breadth, cm

total surface area of platelet, cm?

S

L

A = broad area of platelet cm?

A

e angle between platelet normal and laser beam
P

density, gm/cm?

specific heat, joules/gm-°K

i}

C
€ spectral emissivity at laser

total emissivity

= temperature, °K

= laser pulse energy "density", joules/cm?
= laser pulse length, seconds

= Stefan-Boltzman constant

~
Gl

= 5.67 X 10712 watts/cm?-deg!

t = time, secouds

The subscript ”O” will be usec to denote the matrix.

-26-
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(i) Energy Tkreshold Limit

It will be shown that the damage threshold given in
Figurc 13 for Czochralski ruby is of the order needed to heat iridium inclusions to
melting, The heat energy needed to melt iridium is 1.2 x 10* joules per em?® including
the heat of fusion (se« Tabie 2 below). Then the energy needed for a plateiet of
broad area (1 and thickness s is 1.2 x 10°k s. The energy absorbed by the platelet
from a beam of energy flux density E is CA (A cos 6 E. The flux density Em needed

to produce melting is then given by

c,d cos6Em=1.2x104 A s

1.2x10s

ot Em " e cosB 1)
A

o o (10)
For iridium,ey =0.3 at the Cr R-line in ruby. The platelets are presumed
to have heen pulled into the melt by the convection currents therein. It is assumead
that the platelet then adheres to the growth interface and hence is oriented in the
ruby according to tho geometry of the interface. The latter is typically conical
with a cone ang’e of 45° included. Thus, § ~~ 67° and cos & ~~ 0.4. Then

-

J
E =1 . 2
E_ 0s (2)

In Reference (G), it was noted that iridium inclusions were of the order of
10 microns ( = 10 * c¢m) across, on the average, and that the breadth to width

-5
ratio was roughly Ljs ~20. Hence, s~ .5 microns=5x10 cm and
E_ ~ 5 joules/cm?
m

This is comparable to the damage threshold value for Cznchralski ruby given in

Figure 13.

(10) AIP Handbook, Table 6k-5, 2nd Ed. (McGraw-Hill Book Company, Inc.).
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It should be clear that too many factors - such as laser beam intensity distribution,
inclusion sizes, and the like - are pot well enough defined to allow pinpointing the
damage criterion to the actual melting of iridium inclusions or to heating them tc
the melting point of sapphire or any other specific point at this ﬁx.ne. But it does

appear that significant heating of inclusions is necessary tc produce damage.

It is assumed that a similar result applies rather generally,
i.e., to Verneuil ruby and its inclus:ons and to platinum in glass, in the range of
laser operating conditions considered here. It is of interest to compare the various
metallic inclusions 2s to the energy needed to bring an inclusion of given volume to
melting. This is done in Table 2 where the energy needed to heat an inclusion to

the melting point of sapphire (2310°K is also listed),

TABLE 2

Heat Content AH above 273°K' 1)

AH (joules/cm?)

Element M. P. (K) To Melting Melted To 2310°K
Nickel 130 7250 9900 13100
Iron 1800 7850 9900 12300
Chromium 2160 9070 11300 12200
Platinum 2030 5860 8300 >8300
Iridium 2450 9200 12100 * 7320
Tungsten 3640 —— eeee- 6100

It is apparent that iridium is more or less preferred over transition metal inclusions
depending on whether melting of the inclusions is more important than approaching
the melting point of the matrix. In either case the factor of difference would be ro
more than 2x. Table 2 also shows platinum at a disadvantage by virtue of low heat
requirement; and, if the lower me'tisig point of glass as opposed to sapphire makes

iteelf felt, then it is clear that damage thresholds should be lower for Pt in glass.

(11) Calculated from data compiled by K. K. Kelley. Bulletin 371, Bureau of Mines,
Dept. of Commerce, and from AIP Handbook data where denoted by ¥ .
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All these attempts to compare different materials are based
on equal sizes of inclusions. In an experimental comparison the size, shape, and
orientation of inclusions must be taken into account, Inasmuch as these factors are
generally unknown for laser materials and in particular those of Figure 13, close
correlation of threshold data with the kind of caiculation given above cannoi be made

at this time.

Eq. (1) points up the fact that the thickness of inclusions is
the important size parameter determining damage threshold (similarly, for spherical
inclusions, Em ~ r, the inclusion radius.) The first damage would occur to the
thinnest (smallest) inclusions and as laser radiation increases in intensity progressively

larger inclusions are damaged. This has several implications:

(1) Growth procedures that simply reduce

the size of inclusions are ill-founded.

(2) Damage threshold differences between
individual rods are a matter not only
of the number density of inclusions but
also Jf the size range in the manner

noted above,

An apparent increase in the size of damage sites with
increased laser output may prove on closer inspection to be the formation of new,

larger damage sites.

(ii) Heat Losses from inclusions

In the above discussion heat losses from the jiclusion

have been neglected. We will now consider these for the case of iridium in ruby.
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The rate at which an inclusion re-radiates energy is given

by CTO‘A(T‘-Tj). The ratio of this to the average heating rate e, acos® E/{ is:
€ d_md
R A T o(Té-T¢ )
acos 6 eA E/T (3)

(For spherical inclusions the ratio A/a cos © is replaced by A/a = 2.)

For platelets, A/a~ 2, and, in the case of iridium in Czochralski ruby, cos &~ 0.4,
sn that A/a cos © ~5. With e;~ 0.3, E/g =300 Mw/cm? = 3 x 10° watts/cm?
(Figure 13 and neglecting T relative to T*:

Rv5 %1070 eTO'r4

R equals unity for a black body (eT =1) at T = 42000°K! Hence, R <<1 typicaily.

At a nominal value of E/ = 10% watts/cm? and with
er = 0.3 (as is the case for a variety of metals at T v 2500°K),
R~3 x 107 1°T4

At the melting point of iridium (T2.7 x 103 °K), R~1/6. Thus even in this low

laser power case, radiation cooling is quite negligible.

The only thermal cooling mechanism that can be of any
consequence is conduction in the ruby material. What we have considered here
is a simplitied problem in which the inclusion is neglected except as it serves the
intermediary {unction of making the laser energy it absorbs available to the ruby.

Specifically, the energy is absorbed at .ate
I=eyacos ©L/ 4)

and is delivered to the matrix over area a. Considering a one-dimensional heat flow

treatment to be justifiea by the short pulse times encountered, the temperature at
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(12)

distance X frorm the inclusion plane is given by

" 7
}(. o

oA - u erfe u/ (5)
v

T(x,t) = -"I:

-

where u = X/'(Zm, q,= thermal diffusivity of sapphire = }g’,’(p,co), andyf .,

Qs C, are the thermal conductivity, density and specific hea)t of sapphire, respectively.
This solution assumes temperature independent thermal properties of the matrix,
which is not valid, but here it is used for simplicity and will be compensated for in
part by assuming average values. Using now Eq. (4) and e = 0.3, cos 8 =0.4, . = 4,

the temperature at x = 0 (the "surface', or plane of 1ridium - sapphire contact) is

T(o, t) = 0.034 % )/_ET_){

The median value of the product c, ), over the range 273-2000°K is about 0. 2 cgs;
this will be usec below. The "surface" temperature at the end of the pulse time t=- 7~

for averagz laser power of E/T =3 x 108 watt/cm? is then
To, TyV2 x 10 V2
For = 70 nanosec =7 x 10-8 sec, in the middle of the rang- covered in Figure 13,

T (0, ' ~J6000°K
in excess of the boiling point of sapphire. This result is not taken literaily, but

again is inc cative ~. the need for generatirg high temperatures to produce damage.

The akove treatment of the conduction problem gives some
cause for concern inasmuch as the implied temperature gradient at the "surface' is
approximately 108 °K/cm., or 10°K ner unit hexagonal cell (6 Al;U. molecules) of
sapphire. 'This is so large as to virtually violate the temperature concept, making

the classical heat conduction treatmeni high tenuous.

(12) H.S. Carslaw and J.C. Jaeger "Conduction of Heat in Solids", Clarendon Press,
Oxford (1959), 2nd Ed., p. 262-3.

-31-




eonsws @ WHNENS 4 IDEN 2 GNE  R TTEN OWAEN e

In summary, the above calculations support the assumption
that inclusion heating via laser bearr absorption is in fact involved in the ruby damzg.
mechanism, and they suggest that heating to temperatures as high as, or higher than,
the melting point of the inclusion, or of sapphire, is characteristic. They further
point up the fact that damage sets in sooner - i, e, thresholds are lowered - as

inclusion size decreases.

Recent experimental data (13) has further indicated the
impertance of the particle size on laser damage. A 1/4-inch diameter by 3-inch
long ruby laser rod evaluated to have a censiderable number of inclusions was
lased and examir.d for damage after successive testing at an input energy of

125 joules.

A correlation was attempte d between the observed damage

sit.s and inclusions in the crystal which had been carefully mapped out prior to testing.

Similar to what had been reported previously(ﬁ), the number of damage sites far
exceeded the number of visible inclusions; no damage, however, was observed at

any of the p1reviously spotted inclusions.

Examination of polished windows cut from ruby houles under
dark and bright ticld illumination on a Zeiss Universal Microscope has shown a
large variation in particle size. A small number of inclusions are in the size range
between 10-30 microns with the majority less than 10 microns. In the lasing
experiment described above, the crystal was examined under low power in order to
be able tc scan over the entire length. Under these circumstances, only the larger
inclusions would be visible; the majority of inclusions which were smaller and more

likely to be damaged remained undetected during the initial examination.

No correlation was pcessidle between theory and experiment as
no measurements were made on the actual particle size; it is also possible that some
particles below the level of detection for the .ricroscopic technique used were still

ton large to contribute to laser damage at these input energy levels.

(13) We are indebted to L. R Rothrock of our Laboratory for carrying out these
lasing experiments,
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(3) Large Ruby Growth

A furnace has been constructed to house a 5, 000 cc iridium
crucible. The basic design of the furnace is similar to that used in the growth of
smaller diameter boules with necessary modifications to allow for the larger heat
capacity of the system and the increased weight of the crucible plus charge load.
Considerable plastic flow occurs in iridium at operating temperatures, and the
problem of providing the crucible with adequate support to prevent sagging of the
sides and bottom hkad to be invest.zated closely. Also requiring attention was an
investigation into correct combination of coil design and furnace insulation in
order to come up vith the most efficient heating co:ditions; this was done by
coupling diractly into the empty crucible and measuring the temperature as a
function of coil diameter, nuaber of turns, and thickness of furnace insulation.
This work was necessary because the power level of the available generetor was
slightly low and care had to be taken to avoid drawing plate current in excess of
the rated maximum, This information having been accumulated, a melt was
established and a series of experiments carried out to establish the conditions
for forming a suitable temperature distribution frora which a crystal could be

seeded.

The first growth was carried out under conditions which
were far from ideal and the crystalline quality was poor., However, the size was
correct and a considerable amount of valuatle ¢ xperience was gained from the

exercise; the crystal is shown in Figure 14,

The main problem asscciated with this initial growth was
in temperature confrol where matching was not achieved between the heat capacity
of the system to the correct controller se iting. The response of this system was
much slower than normally encountered, and growth rate fluctuations arising from

excescsive temperature cycling of the melt temperature resulted in poor crystalline

quality.
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After modification of the control system, a second crystal
was grown which was much improved both in shape and quality of the resultant boule.
However, the improvement in quality created problems in the power requirements
for growth, Because of the improved quality, more radiant neat was removed along
the length of the crystal and more power was rc¢ovired from the generator in order
to maintain growth. The combined effect of running the generator closer to its
maximum rated power and an arcing problem at one of the input leads resulted i a
shutdown towards the end of the growth cycle, Cracking occurred in the crystal due

to the necessity of having to remove it too rapidly from the solidifying melt.

Modification of the RF generator was carried out to raise its
operational power level and a third crystal grown. For this experiraent, additional
shielding was incorporated above the crucible and the crystal cooled over a veiry
much longer period of time to eliminate thermal stressing. Also at this point,
enough confidence was felt in both our ability and technique to employ the method
(6)

routinely used on smaller diameter crystals for the reduction of iridium inclusions

Figure 15 shows the "as grown'' boule containing 0. 05 wt %
Cr,C,. The quality is good throughout except where a diameter change led to a drop

in growth ratewith a resulting nucleation of bubbles at the inte~face,

An examination of the boules, using the standard technigue of
shining a well collimated beam of light into the crystal and viewing the scattered
radiation, failed to detect any inclusions, It is possikle that some inclusivns are
present and remained undetected because the light intensity was lower than required
for so large a boule; it is not expected, however, that the number exceeds that

specified as being acceptable for present day ruby laser crystal requirements.

To adequately pump a ~uby rod of dimensions 2 inches in
diameter and 12 inches long, the chromium concentration must not exceed

0. 013 weight percent Cr203(14); thus the latest large diameter crystal produced

{14) V. O. Nicolai, private communrication.
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Figure 14,

Large diameter ruby boule containing o. 05 wt % Cry0; -
first growth.

Figure 15.

Large diameter ruby boule containing 0.05 wt % CryO- -
third growth.
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under the present ccrtract has beer grown specifically with this concentration.
This crystal will ke fabricated with inspection ends to examine its optical
quality.

Having overcome the technical problems of growing so
large a single crystal of good quality, future work will be devoted to improving
further the optical quality: this in turn will require modification of our present
optical evaluation techniques which have been set up to accommodate crystals of

somewhat smaller diameter.
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III. PLANS FOR NEXT PERIOD

Future plans are for essentially a continuation of our present effort.

The effect of chromium distribution on active lasing will be investigated
in more detail. This work will be complemented by an equivalent study of the core
origin and how its effect can be minimized or eliminated by suitable refinement of

our existing growth process.

Results ‘ndicate that the size of the inclusions is an important factor.
Both the effect of modifying the growth technique and purification of the starting
raw material on the size and distribution of inclusions will be investigated; a
parallel study will again be carried out on the effect of these changes on laser

damage during active testing,

The optical quality of the large diameter crystal will be evaluated and
the necessary modifications made to the growth process in order to achieve the

same high standard which is at present obtained with smaller diameter boules.
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